Invented 30 years ago, the atomic force microscope has been a major driver of nanotechnology, ranging from atomic-scale imaging to its latest applications in manipulating individual molecules, ...
Atomic force microscopy (AFM) has established itself as a decisive tool for probing nanoscale interactions, particularly adhesion forces and capillary phenomena. A precise understanding of these ...
Atomic Force Microscopy (AFM) has evolved into a central technique in nanotechnology, providing three-dimensional imaging and precise measurements at the atomic scale. Its ability to probe surfaces by ...
First invented in 1985 by IBM in Zurich, Atomic Force Microscopy (AFM) is a scanning probe technique for imaging. It involves a nanoscopic tip attached to a microscopic, flexible cantilever, which is ...
Christoph Gerber, who co-invented the atomic force microscope, tells Matthew Chalmers how the AFM came about 30 years ago and why it continues to shape research at the nanoscale Nano-vision Christoph ...
Researchers at the Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, report in the Journal of the American Chemical Society the use of three-dimensional atomic force microscopy (AFM) and ...
Through a novel combination of machine learning and atomic force microscopy, researchers in China have unveiled the molecular ...
In MFM, a magnetic-coated AFM probe interacts with magnetic field gradients from the sample, causing detectable forces on the probe's cantilever. To focus on magnetic interactions, MFM is often ...
IIT Delhi researchers, with international collaborators, have developed AILA, an AI agent that can autonomously conduct scientific experiments. AILA can operate complex instruments like an Atomic ...