About 50 results
Open links in new tab
  1. 如何通俗易懂地讲解什么是 PCA(主成分分析)? - 知乎

    如何通俗易懂地讲解什么是 PCA(主成分分析)? 博主没学过数理统计,最近看 paper 经常遇到,但是网上的讲解太专业看不懂,谁能通俗易懂的讲解一下,主成分分析作用是什么?

  2. 如何通俗易懂地讲解什么是 PCA(主成分分析)? - 知乎

    PCA最常见的应用是降维,为什么PCA能降维? 假设你有 3 个维度,经过PCA 分析后发现第 1 主成分贡献80% 信息(方差),第 2 主成分贡献18% 信息(方差),第 3 主成分只贡献 2% 信息(方差)。

  3. 如何通俗易懂地讲解什么是 PCA(主成分分析)?

    主元分析也就是PCA,主要用于数据降维。 1 什么是降维? 比如说有如下的房价数据: 这种一维数据可以直接放在实数轴上:

  4. 谁能通俗易懂地解释一下Principal component analysis (PCA)?

    Nov 19, 2018 · PCA原理类似,就是在找一个个新的坐标维,让高维数据可以在少量的几个坐标维上投影保留原有数据尽量多的variation。 第一个维度抽完后,再在没解释完的residual里面抽第二个第三个 …

  5. 主成分分析(PCA)的原理谁懂的?可以讲解下? - 知乎

    PCA 从三维缩减到二维后的散点图 PCA 在处理具有大量特征的数据集时非常有用。图像处理、基因组研究等常见应用总是需要处理数千甚至数万列数据。虽然拥有更多的数据总是好事,但有时数据中的信 …

  6. 主成分分析(PCA)主成分维度怎么选择? - 知乎

    主成分分析(PCA)主成分维度怎么选择? 想请教一下各位大神,在主成分分析中,对于N阶方阵从其特征向量中提取K个主特征向量,这里我想问一下,这个K值是怎么设定的? 有人说是盖尔圆盘定理确 …

  7. 独立成分分析 ( ICA ) 与主成分分析 ( PCA ) 的区别在哪里? - 知乎

    但在ICA之前,往往会对数据有一个预处理过程,那就是PCA与白化。 白化在这里先不提,PCA本质上来说就是一个降维过程,大大降低ICA的计算量。 PCA,白化后的结果如下图所示。 可以看到,原先 …

  8. PCA图怎么看? - 知乎

    PCA结果图主要由5个部分组成 ①第一主成分坐标轴及主成分贡献率主成分贡献率,即每个主成分的方差在这一组变量中的总方差中所占的比例 ②纵坐标为第二主成分坐标及主成分贡献率 ③分组,图中分 …

  9. PCA得分图横纵坐标的正负和数值大小代表什么? - 知乎

    在PCA得分图中,横坐标(通常是PC1)和纵坐标(通常是PC2)代表的是两个主要的主成分。 这些主成分为了解释数据的最大方差而被提取出来。 具体来说: 正负值并不直接提供关于样本的具体意义的 …

  10. 如何进行PCA分析? - 知乎

    PCA告诉我们的是,我们预先确定的x轴和y轴对于描述我们选择的数据并不是那么有意义。 因为所选数据的分布角度大约是45度,所以选择u1和u2作为坐标轴比选择x和y更有意义。